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ABSTRACT 

The military has realized that its most valuable and adaptable assets are its 

leaders. Understanding optimal decision-making will allow the military to more 

effectively train its leaders. The Cognitive Alignment with Performance Targeted 

Training Intervention Model (CAPTTIM) was developed to aid the training of 

optimal decision making. CAPTTIM determines when decision performance 

(categorized as near-optimal or suboptimal) is aligned or misaligned with 

cognitive state (categorized as exploration or exploitation): when someone thinks 

they have figured out the task (exploitation cognitive state), is their decision 

performance actually near optimal? Prior research categorized subjects’ 

cognitive states as exploration or exploitation, but the delineation of decision 

performance had yet been done. The primary focus of this thesis was to use pre-

collected and de-identified data to (1) determine and validate a threshold that 

delineated near-optimal and suboptimal decision performance with the metric, 

regret, and (2) categorize the combination of cognitive state and decision 

performance into CAPTTIM on a trial-by-trial basis. A change point analysis of 

regret provided an effective threshold delineation of decision performance across 

all subjects. Visualization techniques were employed to categorize decision and 

cognitive state data into CAPTTIM on a trial-by-trial basis. Thus, CAPTTIM was 

validated as a means of understanding decision-making. 
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I. INTRODUCTION 

A. BACKGROUND 

Understanding optimal decision-making is an extremely complex task, but 

one that the military is currently trying to accomplish. The focus on decision-

making is being renewed in an effort to not only understand the processes 

involved in decision-making, but also improve decision-making among service 

members. The goal of improving effective decision-making is to increase the 

combat effectiveness of the military. The last 14 years of combat operations in 

Afghanistan and Iraq have illustrated the necessity for military leaders to be 

adaptable, agile, and able to operate in a threat environment that spans irregular 

and regular warfare, terrorist activity, and at times even governance (Lopez, 

2011). The combat environment has always been complex; however, in a non-

conventional environment (irregular warfare), that complexity is increased 

exponentially. The recent and ongoing conflicts in Iraq and Afghanistan illustrate 

the importance of developing leaders with the cognitive flexibility to learn from 

feedback from their environment to improve decision performance. in these two 

conflicts leaders sometimes drew false conclusions about the effectiveness of 

their operations by attending to historically used measures of performance, such 

as enemy attrition. From personal experience, a lot of confusion occurred when 

high enemy body counts were not associated with victory or decreased violence. 

There was an inability to recognize through trial and error and reinforcement 

learning that the current approach was not successful. A lot of reinforcement of 

failure occurred, because of this lack of understanding. Had the military 

understood optimal decision-making better, this reinforcement of failure could 

have possibly been avoided by making the decision maker more adaptable, 

agile, and aware of the complex nuances of the counter-insurgency environment. 

The military is in an ideal position to evaluate decision-making among 

current service members who have spent the last eleven years engaged in 

combat operations in Iraq and Afghanistan. With this wealth of combat 



 2 

knowledge contained within current active duty service members, the military can 

glean decision-making patterns from experienced decision makers. These 

patterns can then be analyzed in order to better understand how experienced 

decision makers arrive at optimal or near-optimal decisions. Once this process is 

understood, then the military can (1) improve combat effectiveness by developing 

programs to improve decision making among its current leaders and (2) instruct 

future leaders on optimal decision making to improve their leadership potential. 

The primary goal of understanding optimal decision-making is to develop 

training aids to instruct naïve service members in an effort to shorten the 

experiential knowledge required to develop effective decision-making practices in 

combat. Another goal of these training aids is to provide the instructor with insight 

into the trainee’s decision-making process. Such training aids would benefit 

instructor to trainee interaction and provide insight on timing and type of 

intervention required by the instructor.  

Kennedy, Nesbitt, and Alt (2014) developed a training intervention model 

called Cognitive Alignment with Performance Targeted Training Intervention 

(CAPTTIM). This model seeks to determine if a trainee’s cognitive state is 

aligned or misaligned with their actual performance. The model utilizes latency in 

decision-making to determine the trainee’s cognitive state; however, no “generic” 

metric for determining actual performance has been researched. This thesis 

seeks to determine an appropriate threshold that delineates between high and 

low regret. Determining a threshold between high and low regret is an essential 

step before the model can be tested. 

B. REINFORCEMENT LEARNING IS NECESSARY TO REACH OPTIMAL 
DECISION-MAKING 

One cognitive characteristic necessary for military personnel to reach 

optimal decision-making is reinforcement learning, the ability to learn from trial 

and error (Sutton & Barto, 1998). Reinforcement learning is necessary when 

there is a high degree of uncertainty. High levels of uncertainty are associated 
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with combat operations and environments, in which limited intelligence is known 

about the situation, but high stake decisions still have to be made. In these 

situations the military leader makes a “best guess” decision based on experience 

and training. Current reinforcement learning tests, which are typically 

computerized laboratory tests, do not completely capture the stressors, 

uncertainty, and high risk conditions of decisions made in combat (Nesbitt, 

Kennedy, & Alt, 2015). For example, the Iowa Gambling Task (IGT) (Bechara, 

Damasio, Damasio, & Anderson,1994), a very common test of reinforcement 

learning that has been used in hundreds of psychology studies (Krain, Wilson, 

Arbuckle, & Castellanos 2006), entails selecting cards from four different decks in 

a low stress, low stakes, game playing environment. This shortfall has led to the 

need to create realistic military scenarios and simple wargames that elicit 

reinforcement learning (Nesbitt et al., 2013). Therefore, Kennedy et al (2014) 

modified the IGT to mirror a military environment. 

1. The Iowa Gambling Task 

The IGT is a well-known psychology task that elicits reinforcement 

learning (Bechara et al., 1994) and has been used in hundreds of studies (Krain 

et al., 2006). Subjects are given a loan of $2,000, presented four decks of cards 

(decks A-D) face down, and asked to make selections that result in maximizing 

profit. Figure 1 shows a screen shot of the IGT setup. 
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Figure 1.  The Iowa Gambling Task screenshot (from Sacchi, 2014). 

Each deck has a scheduled dollar payout and penalties that the subject 

receives depending on their deck selection. The payout amount as well as the 

severity and frequency of the penalty, differs from deck to deck. Subjects can 

change the order of their selection at any time and can choose solely from a 

single deck if they so desire. Through reinforcement learning, healthy subjects 

eventually discover that decks A and B result in long term losses, despite having 

higher initial payouts (Bechara et al., 1994). They then realize that, despite lower 

initial payouts, decks C and D result in long-term gains. Performance is 

measured by total money won and advantageous selection bias. Advantageous 

selection bias is calculated by subtracting the number of poor decisions (decks A 

and B) from the number of good decisions (decks C and D). 

Appendix A lists the payout schedule for each deck over the 100 trials. It is 

important to note that the payout schedule does not reset after each card 

selection. Until a subject selects a particular deck, the payout for that deck 

remains the same. For example, Deck B has a negative 1250 penalty every tenth 

turn but the highest payouts otherwise; the subject cannot game the system by 

choosing Deck B nine times, but a different deck on the tenth turn, return to Deck 

B on the 11th turn in an attempt to avoid the negative 1250 penalty. 
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2. Convoy Task 

The IGT was modified into the convoy task to reflect the risks and 

scenarios faced in a military environment, while mirroring the reinforcement 

learning elicited by the IGT. In the convoy task each subject selects a route on 

which to send a convoy and is given a choice between four different convoy 

routes. The task entails 200 trials of these decisions. At the end of each trial the 

subject is given immediate feedback with three separate pieces of information: a 

reward, a penalty, and a running total (Nesbitt et al., 2013). The reward is called 

Damage to Enemy Forces, the penalty is called Damage to Friendly Forces, and 

the running total is called Total Damage (Nesbitt et al., 2013). Damage to 

Friendly Forces is analogous to a loss of money in the IGT, while Damage to 

Enemy Forces is analogous to a gain of money. Total Damage is analogous to 

the loan amount and winnings in the IGT. The convoy route selection task’s 

feedback values were adopted from the original IGT payout schedule (see 

Appendix A). Subjects are instructed that their goal is to maximize the total 

damage score by minimizing friendly damage and maximizing enemy damage. 

Like the IGT, subjects should learn through reinforcement learning that routes 

one and two are bad and routes three and four are good. Data collected from the 

34 subjects who participated in the convoy task confirmed that it elicits 

reinforcement learning (Kennedy et al., 2014). 

3. Cognitive Alignment with Performance Targeted Training 
Intervention 

In analyzing data from the 34 subjects that participated in the convoy route 

task, Kennedy et al. (2015) developed a training intervention model called 

Cognitive Alignment with Performance Targeted Training Intervention (CAPTTIM) 

(see Figure 2). This model determines whether a person’s cognitive state is 

aligned or misaligned with actual performance. The model delineates two 

cognitive states, exploration and exploitation. Exploration is defined as naïve 

decision-making, in which a person is seeking to further their understanding of 

the environment by gathering information. Exploitation is defined as experienced 
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decision-making, in which a person believes that they have attained enough 

information to begin acting upon that knowledge. The model quantitatively 

characterizes exploration and exploitation by variability in latency times on 

making each decision (Fricker, 2010). A standard deviation for each subject was 

calculated utilizing only the latency times on their decisions that resulted in no 

damage. Variability greater than twice the subject’s standard deviation is 

considered exploration, whereas variability less than twice the standard deviation 

is considered exploitation. However, changes in latency time variability provided 

no measure of actual performance for the individual. 

 
Figure 2.  The combination of cognitive state and actual decision 

performance indicates whether a trainee’s cognitive state is 
aligned or misaligned with actual performance. When 

misalignment occurs, it indicates the need for a training 
intervention (from Kennedy, 2015). 

Actual performance is measured by regret. Regret is quantified as the 

difference between the maximum possible payout for a particular trial, and the 

actual received payout for a particular trial (Agrawal, 1995). Because the payout 
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schedule is consistent from individual to individual, their deviation from the 

optimum path can be measured. However, a threshold delineating high from low 

regret has not been calculated yet. 

The convoy route task has a specific sequence of payouts, providing the 

ability to know at any point in the sequence of trials which route provides the 

most advantageous reward (Nesbitt et al., 2015). Because the best reward is 

known, it is possible to calculate the difference between the best reward and the 

subject’s received reward at that specific trial in the convoy route selection task. 

This difference is defined as regret. 

Regret is an absolute performance metric that provides the ability to 

compare actual performance of the subject with their cognitive state. If the 

subject’s performance is misaligned with their cognitive state then the instructor 

can intervene and make the appropriate correction. This is very similar to Type I 

and Type II error from statistics. The subject’s performance can be correctly 

aligned with their cognitive state, which is the ideal transition that is captured in 

CAPTTIM. Otherwise the subject is making incorrect exploitation decisions 

believing them to be correct (false positive), or they are making the correct 

decision, but do not know that they are making the correct decision (false 

negative). Either of the latter two options requires instructor intervention. The 

possibility of being able to align a trainee’s cognitive state with actual 

performance is consistent with what the military is trying to accomplish in their 

pursuit of understanding optimal decision-making. 

C. REGRET 

Regret is used in numerous fields ranging from computer science, 

machine learning, and even the medical field. It is very easily applied to 

scenarios, like the IGT, where the optimum decision is known. For the medical 

field it is applied retrospectively to describe the diagnosis or misdiagnosis of 

patients (Djulbegovic, Elqayam, Reljic, Hozo, Miladinovic, Tsalatsanis, Kumar, 

Beckstead, Taylor, & Cannon-Bowers, 2014). An interesting application from this 
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publication that directly relates to the research question of this thesis is how 

much regret affects future decisions (Djulbegovic et al., 2014). 

The defining principle of regret is that if you minimize regret, then you are 

converging on the correct decision, or for multi-arm bandit scenarios, the correct 

slot machine (Agrawal, 1995). This principle will be directly applied to this thesis 

to determine a subject’s performance and determine if their performance is 

aligned or misaligned with their cognitive state. In layman’s terms, is the subject 

making the right decision ignorantly, making the wrong decision thinking it is the 

correct decision, or do they transition correctly? 

Most utilization of the principle of regret has been on analyzing its impact 

on decision-making or convergence on a decision in a multi arm bandit scenario. 

No articles could be found that discussed using regret as a method of measuring 

performance in the way that it is being proposed in this thesis. Other papers use 

regret as an additional factor in an expected utility function in an attempt to 

explain behaviors and choices (Bell, 1982). 

Bell gives an illustrative anecdotal example of regret. He describes a 

farmer who has a field of crops that are not yet ready to be harvested. A buyer 

approaches the farmer and offers him five dollars a bushel for his produce. The 

farmer knows that, depending on the harvest, his produce could sell for as much 

as seven dollars a bushel or as little as three dollars a bushel. The farmer is 

faced with two potential forms of regret: (1) where he accepts the five-dollar-a-

bushel offer and the harvest yields a seven-dollar-a-bushel product, (2) he 

refuses the five-dollar-a-bushel offer and the harvest yields a three-dollar-a-

bushel product. Bell then describes how these two forms of regret have very 

different effects on differing subjects. For some subjects, the fear of losing two 

dollars per bushel, in the event of an inferior crop, influences their decision much 

more than the possibility of gaining an extra two dollars per bushel (Bell, 1982). 

Bell then highlights this phenomenon later on in his paper, when he discusses 

the utility function. In this example, he discusses how a person might “feel” 

greater regret between an outcome of $1,000 and $2,000 than an outcome of 
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$1,000,000 and $1,001,000, despite the fact that both gained or lost $1,000 (Bell, 

1982). He discusses how the increment is not “felt” the same between both 

outcomes (Bell, 1982). Bell (1982) additionally made the following comment that 

is applicable to this thesis and could possibly explain decisions made by 

subjects: “At an extreme, a decision maker who has severe problems with regret 

may sometimes prefer to have only a single alternative offered than a choice 

among two or more” (p. 969). This idea could possibly explain certain subjects’ 

behavior and their decision to only select certain routes, rather than exploring all 

options. 

Bell additionally looked at regret to explain behaviors and gives anecdotal 

examples in the realm of insurance and gambling. “The consequence with the 

largest regret is that in which you choose not to bet, but hear that you would have 

won” (Bell, 1982, p. 971). If an individual decides not to bet on the horse with 

long odds, he or she experiences a high amount of regret if that horse wins (Bell, 

1982). If you bet on the same lottery number for an extended period of time, the 

thought of that being the winning number as soon as you stop choosing it could 

be strong enough to encourage you to continue gambling (Bell, 1982). Bell 

argues that regret can be used to justify risk-prone behavior (gambling) and risk-

averse behavior (purchasing insurance) on the part of the same decision maker 

(Bell, 1982). For risk-averse behavior, subjects are willing to accept the regret 

associated with paying for insurance, but never making a claim (Bell, 1982). 

Regret is an effective performance metric in tasks in which the payout or 

reward is known for each decision. For this reason, it is a common performance 

metric used in gambling scenarios, specifically with multi-arm bandit gambling 

scenarios (Nesbitt et al., 2015). In these scenarios, the optimum path can be 

determined. Deviations from this optimum path can be quantified by this notion of 

regret. We now provide an example of how regret is calculated in a scenario in 

which the optimum path can be determined—the convoy task payout schedule 

(Figure 3). In this excerpt, if a subject chooses Route 4 on trial 1, their regret will 

be 100 – 50 = 50, because the optimum choice was either Route 1 or Route 2.  
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If the subject chooses Route 4 again on trial 2, their regret will be  

100 – (-250) = 350, because the optimum choice was still either Route 1 or Route 

2. If the subject chooses Route 2 on trial 3, their regret will be 100 – 100 = 0, 

because Route 2 was one of the optimum choices. If by trial 9 all routes have 

been selected exactly twice and the subject chooses Route 2, their regret will be 

0 – (-1250) = 1250, because the optimum choice was Route 4 with a payout of 

zero. Another key note to make about this payout schedule is that the payout 

does not redistribute after each selection. The columns can be viewed as a stack 

where each payout choice remains at the top until chosen. For example, from the 

schedule below in Figure 3, if a subject does not choose Route 1 until trial 6, their 

payout would still be 100. 

 
Figure 3.  Payout schedule excerpt. The blue cell indicates the optimal 

decision; the yellow cell shows the subject’s selection on trial 1; 
the green cell indicates the subject’s selection on trial 2. 

D. THESIS GOALS 

This thesis has four objectives: (1) find a threshold that delineates 

between high and low regret (decision performance), (2) combine the decision 

performance data with the cognitive state data, (3) validate these results and 

CAPTTIM, and (4) develop a visualization method for displaying a subject’s 

CAPTTIM category on a trial-by-trial basis. A superficial analysis of regret, from 

the previously collected data, showed that it was consistent with subject’s actual 

performance, as measured by total damage score. Subjects that identified the 

convoy route with the optimal long term result had a decreasing amount of regret 

Route 1 Route 2 Route 3 Route 4 Subject's Selection Regret
100 100 50 50 Trial 1: Route 4 100 - 50 = 50
-350 0 -50 -250 Trial 2: Route 4 100 - (-250) = 350
-250 -1250 -50 0 Trial 3: Route 2 100 - 100 = 0

0 0 0 0
-200 0 -50 0

0 0 0 0
-300 0 -50 0
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(Nesbitt et al., 2015). If a threshold for regret is validated, then the utility of 

CAPTTIM can be tested with other military tasks. CAPTTIM has the potential to 

provide the instructor with real time guidance on type and timing of intervention in 

a training scenario. 
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II. METHODS 

The data used in the analysis portion of this thesis was previously 

collected from the convoy task and de-identified. This chapter will list in detail the 

tools and methods used to analyze the regret data in an effort to delineate a 

threshold between high and low regret. These methods were initially tested (i.e., 

piloted) on a randomly selected subset of eight of the 34 participants who 

completed the convoy task. Data from the remaining 26 participants would be 

used to test the final, selected method. An iterative process was conducted to 

find an appropriate method, in which initially selected methods informed and 

directed the subsequent methods. As a result, all the methods described below 

are more or less in chronological order (exponentially weighted moving average, 

simple moving average, x bar control chart, change point analysis). 

A. STATISTICAL SOFTWARE: R STUDIO 

The programming language R (R Development Core Team, 2008), which 

was developed for statistical computing, was utilized for the analysis of the regret 

data collected from the convoy task (Nesbitt et al., 2013). All the code written for 

this analysis can be viewed in Appendix B. R-Studio, the integrated development 

environment (IDE) that was developed for the R language, was used to develop 

the code that analyzed the regret data. R-Studio is an open source IDE that 

allows the user to code line by line the exact code for statistics equations. R-

Studio varies from a statistics program like JMP in that it requires the user to 

understand and program every function rather than operating in a drag and drop 

type fashion like JMP. 
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B. METHODS USED TO DELINEATE HIGH AND LOW REGRET 

Each of the following methods used to research a threshold delineating 

between high and low regret were coded and calculated in R Studio. Once an 

analysis was conducted with a specific method, the research team was briefed 

on the results. This collaboration led to the rejection of three of the four methods 

utilized to distinguish a regret threshold. 

The following sections will chronologically list each of the four methods 

that were researched. A thorough explanation of each method and how it was 

used in an attempt to delineate between high and low regret will be given. 

Additionally, the shortfalls of the first three methods to delineate between high 

and low regret will be explained. 

1. Exponentially Weighted Moving Average (EWMA) 

The following section will give a brief introduction of the EWMA equation 

and its common uses. The next section will discuss how the EWMA was used to 

analyze the data collected for this thesis. This was the first method explored in an 

effort to find a threshold to delineate decision performance (high versus low 

regret). 

a. Explanation of EWMA Equation and Uses 

“The Exponential Weighted Moving Average (EWMA) chart is used for 

monitoring process by averaging the data in a way that give less weight to old 

data as samples are taken and gives more weight to most recent data” (Braimah, 

Osanaiye, Omaku, Saheed, and Eshimokhai, 2014, p. 1). EWMA also is very 

effective at detecting minor changes in the process mean (Braimah et al., 2014). 

It was originally developed by S. W. Roberts in 1959 as a means of monitoring 

control/performance charts in industrial processes (Braimah et al., 2014). It also 

has been very useful in time series analysis and forecasting (Braimah et al., 

2014). The following is how an individual EWMA value is calculated as 
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Zi = λXi + (1 – λ) Zi-1 , 

where Zi is the EWMA control statistic, λ is the weighted parameter, and Xi is the 

actual observed data value 

A key difference between EWMA and a simple moving average is that 

EWMA considers all previous data points, while a simple moving average only 

considers data points within a specified window (Braimah et al., 2014). “EWMA 

weights samples in geometrically decreasing order so that the most recent 

samples are weighted most highly while the most distant samples contribute very 

little” (Braimah et al., 2014, p. 2). This weighted parameter, λ (0 < λ ≤ 1), is a 

mathematical representation of how heavily memory of past data is relied upon 

(Kalgonda, Koshti, and Ashokan, 2011). As λ increases from zero to one, more 

weight is placed on recent data points and less weight is placed on distant data 

points. If λ = 1, then 100 percent of the weight is placed on the most recent data 

point and no weight is placed on the past (Kalgonda et al., 2011). The sensitivity 

of the EWMA to small shifts in the process mean is reliant upon the value of λ 

(Kalgonda et al., 2011). 

The use of EWMA as a means of detecting changes in regret was based 

on the EWMA’s sensitivity to small shifts and reliance on memory. Because 

decisions on the convoy task rely heavily upon working memory and the 

influence of past decisions on future decisions (Kennedy et al., 2013), this 

method of averaging regret seemed more appropriate than a simple moving 

average. 

Using EWMA to analyze regret was the initial approach taken because it 

worked exceptionally well in characterizing subject’s cognitive state based on 

decision time latencies in the convoy task. An effective threshold delineating 

between the cognitive states of exploration and exploitation was applied to this 

EWMA and accurately portrayed subject’s transition between these two states.  
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The threshold that was used was double the standard deviation of each subject’s 

latency times in decisions that resulted in low damage. The EWMA equation for 

time latency utilized a λ value of 0.1. This λ value means that subjects had a 

heavy reliance on past decisions, since (1 – λ) determines the weight placed on 

past data points. This code was modified to analyze regret and utilized the same 

value of λ. 

b. EWMA of Regret 

The initial EWMA of regret looked at the mean values of regret. This 

meant that the EWMA was looking at the cumulative regret divided by the 

number of trials. This analysis produced some interesting results. However, upon 

further discussion with the research team and additional analysis, the use of the 

mean regret as the values on which to conduct the EWMA was determined to be 

incorrect. By using mean regret the values were essentially being smoothed 

twice. Dividing the cumulative regret by the trial was taking an average after 

every trial; this average was again being averaged with the EWMA based on the 

weight placed on past data. This realization led to the decision that the EWMA 

should be conducted on the regret per trial for each subject. 

By using the regret received by the subject at each trial, the EWMA was 

looking at actual values and not an already averaged value. The result was much 

more volatile changes in the EWMA. 
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Figure 4.  EWMA of regret for Subject 14 using mean regret. Mean regret 

proved to be inappropriate as it was performing a EWMA on an 
already averaged regret value. This accounted for the much less 

volatile spikes in regret value. The large red dots are high damage 
instances. The medium blue dots are medium damages, and the 

small green dots are low damage instances. The shaded red area is 
where the EWMA is above the threshold and the shaded green area 

is where the EWMA is below the threshold. The threshold is 
calculated as 0.5 times the standard deviation of the mean regret. 
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Figure 5.  EWMA of regret for Subject 14 using regret received at each trial. 

The volatility in high regret is seen with the sharp red peaks which is 
where regret reaches values of 1250 for high friendly damage. The 
red, blue, and green dots are for high, medium, and low damages 
respectively. These dots are plotted along the mean regret line. 

Shaded red areas are above the threshold, while shaded green areas 
are below the threshold. The threshold is defined as the standard 

deviation of the regret received per trial. 

The threshold value for the EWMA conducted on mean regret had to be 

adjusted to one half the standard deviation of regret in order to have the EWMA 

fall above and below the threshold, as can be seen in Figure 4. This adjustment 

was as a result of averaging an already averaged value. The threshold for the 

EWMA conducted on regret received per trial was strictly the standard deviation 

of the regret per trial and did not require any fractional adjustment. After 

discussion and further analysis with the research team, it was suggested that a 

sensitivity analysis of λ to the regret per trial data be conducted. Based on the 

sensitivity analysis the ability to tune λ to the actual data could be achieved. 
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This sensitivity analysis of regret per trial to λ resulted in the realization of 

the difficulty of tuning this parameter for this use case. The analysis showed that 

a λ value of 0.9 achieved the line of best fit for each subject to the actual regret 

data (this realization is trivial given the EWMA equation). This value of λ 

illustrated that subjects placed very little weight on past regret and that the 

immediate results influenced their decision the most. Figure 5 illustrates this point 

—had Subject 14 weighted past decisions heavily, the spikes in regret would 

have become less volatile and been spread across future decisions, illustrating 

that he/she had been influenced by the previous decision. 

Thus, this EWMA was fit to the actual regret per trial data and led to highly 

volatile changes in regret. Despite a defined payout schedule, values of regret 

are very random across subjects with a wide range of possible values. For 

example, one subject may have only experienced regret values of 50 if they 

converged on the optimal path, while another subject may have experienced 

regret values of 1250 since they did not converge on the optimal path. The high 

volatility of these values made defining a single threshold difficult, since regret 

could range from 0 to 1250. This issue made it difficult to classify into which 

category of the CAPTTIM model a subject should be categorized. Therefore, 

other approaches were sought. The next method examined was the simple 

moving average. 

2. Simple Moving Average 

Rather than looking at a trial by trial analysis of whether regret was 

increasing or decreasing, a simple moving average was conducted to “block” 

regret by a specific number of trials. As a reminder, simple moving average 

differs from EWMA in that it only considers the data within a specific window, 

whereas the EWMA considers all data points and weights them according to the 

value of λ. Two approaches were taken: (1) the simple moving average looked at 

a moving window of five trials throughout the 200 trials of regret data (2) the 

simple moving average did the exact same calculation with a moving window of 
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10 trials. The moving window of five trials allowed for more granularity in 

observing this subject’s changes in regret. Utilizing a larger window gives less 

blocks to analyze changes in regret and thus does not provide as much 

sensitivity for changes in regret (see Figures 6 and 7). As a result, the simple 

moving average that utilized a window of 5 trials was used for the follow on 

analysis of regret. 

 
Figure 6.  Simple moving average of regret per trial for Subject 1 with a  

window of 5 trials. The solid blue line shows the averaged regret 
and how high values in regret influenced the average for the 4 
previous and 4 successive trials. Had a simple moving average 

not been used, high values of regret would be single vertical 
lines. 
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Figure 7.  Simple moving average of regret per trial for Subject 1 with a 

window of 10 trials. The solid blue line shows the averaged 
regret and how high values in regret influenced the average for 
the 9 previous and 9 successive trials. Comparison to Figure 6 
shows how, for the same subject, the spikes in high regret are 

broadened by utilizing a larger window. 

The use of a simple moving average of regret provided more insight into 

defining a subject’s performance than the EWMA of regret. Because regret for 

most subjects was extremely random, trying to define a threshold to differentiate 

between high and low regret using an EWMA was very difficult to do. The simple 

moving average allowed an analysis of discrete blocks to determine the slope of 

the line, which in turn showed whether regret was increasing or decreasing at 
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specific points. However, as described in the section below, it was discovered 

that the simple moving average method also had drawbacks. 

3. X-Bar Control Chart 

Instead of looking at a simple moving average of regret and applying a 

threshold that delineated between high and low regret, a better approach could 

be to create a control chart that defines a median and an upper control limit. As 

long as the value falls within the upper control limit, the subject is deemed within 

tolerance or having low regret. The control chart made it a lot easier to classify 

subjects into their specific category in CAPTTIM. Originally the control chart 

looked at using the mean of regret per trial plus the standard deviation of regret 

to define the upper control limit. This upper control limit adjusted utilizing the 

same 5 trial window that the simple moving average utilized. However, what the 

research team found was that the mean was not a useful metric for determining 

the upper control limit of the control chart. This was due to the fact that regret has 

possible values ranging from 0 to 1250. With such volatility in values, the mean 

and standard deviation are skewed due to these high spikes in regret 

experienced by most subjects. Therefore, the upper control limit was falsely 

classifying subject performance, and as a result very few subjects were being 

classified as out of tolerance (high regret). In fact, most subjects were being 

classified as having low regret despite their actual overall performance (final 

damage score). A histogram of regret was created, in order to illustrate the 

unsymmetrical characteristic of the regret data (see Figure 8). 
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Figure 8.  Histogram of regret data for Subject 1. This clearly illustrates 

that the majority of regret values experienced by Subject 1 are 
of magnitude 50 and that the high spikes in regret only occurred 

a handful of times. 

Due to the variation in the data for regret, the next approach taken was to 

look at the median of regret versus the mean. Additionally the research team 

recommended looking at a window of 20 trials to calculate the median and upper 

control limit in order to provide a more stable analysis of tolerance. This window 

of 20 trials was chosen based on the payout schedule and when these large 

values of regret were incurred. Additionally the window of 20 trials provided an 

appropriate window in which subjects would be allowed to illustrate reinforcement 

learning and make mistakes and adjust their course of action. Smaller windows 

proved to be too restrictive and classify subjects out of tolerance too hastily. The 
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new upper control limit for the X-Bar chart was then calculated as the median 

plus the median absolute deviation for the moving window of 20 trials. Figure 9 

shows the X Bar control chart for Subject 1. The solid blue line is the simple 

moving average described before, and the dashed red line is the median plus the 

median absolute deviation, which is recalculated every 20 trials. Points on the 

simple moving average that were above the dashed red line are considered out 

of tolerance (high regret), while points below the red dashed line were 

considered within tolerance (low regret) (see Figure 9). 

 
Figure 9.  X-Bar control chart for Subject 1. The solid blue line is the  

simple moving average that was previously discussed. The 
dashed red line is the upper control limit. The upper control limit 
is defined as the median plus the median absolute deviation and 
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is recalculated every 20 trials. 

4. Change Point Analysis 

After discussion with the research team and a recommendation from the 

team statistician, Dr. Fricker, a change point analysis was conducted to 

determine the best window size of trials to create the upper control limit for the X-

Bar control chart. Change point analysis is useful in determining if a change 

occurred, how many changes occurred, when the changes occurred, and 

provides with what confidence the changes occurred (Taylor, 2000). Change 

point analysis is extremely flexible and can be performed on all types of time 

ordered data to include, attribute data, non-normal distributions, ill-behaved data, 

and data with outliers (Wayne, 2000). A key difference between change point 

analysis and control charts in the context of regret is that control charts can be 

generated following each individual trial, while a change point analysis can only 

be generated retrospectively (Wayne, 2000). Change point analysis is typically 

more sensitive and can often detect changes in the process mean that are 

missed by the control chart, thus the two methods are best employed in a 

complimentary fashion (Wayne, 2000). 

5. Final Method: Combination of Control Chart and Change Point 
Analysis 

Combining control chart and change point analysis, in this complimentary 

fashion, is the method being employed in this thesis. The statistical computation 

language R contains built in packages for conducting change point analysis. The 

R package utilized in this analysis was the segment neighborhood (SegNeigh) 

algorithm (Killick, & Eckley, 2014). This algorithm utilizes dynamic programming 

to calculate the optimal segmentation for m + 1 change points and reuses the 

data calculated for m change points (Killick et al., 2014). This essentially means, 

that the algorithm searches over all previous change points and chooses the one 

that results in the optimal segmentation up to that time (Maidstone, Fearnhead, & 

Letchford, 2013). This package takes a variable Q that specifies the maximum 
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number of change points to identify. This was useful in the analysis of the non-

normal data contained in the data set of regret per trial. Due to the volatility of the 

regret per trial data, running a change point analysis package that identified 

every change point was not useful. However, by specifying a smaller number of 

change points (Q=15) the analysis was able to yield results that were useful in 

delineating between high and low regret. Figure 10 shows the change point 

analysis performed on Subject 1. 

 
Figure 10.  Change point analysis for Subject 1. The solid black line is the 

regret per trial data. The solid red lines are the process means 
returned by the change point analysis—they represent the 

process mean for that range of trails. The large spikes in regret 
incurred a change in the process mean that spanned the single 

trial in which the regret was incurred. 
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After studying the change point analysis and further discussion with the 

research team, it was decided that, rather than using an X-Bar control chart, 

creating a box plot of the means associated with each change point and 

determining if the mean was above or below the median would accurately 

delineate between high and low regret. Because the change point analysis 

returns the mean as well as the trial number for each change point, the subject 

can be accurately categorized in CAPTTIM for a range of trials. This was the final 

method decided upon for analyzing regret for the subset of 8 subjects along with 

the subsequent 26 subjects. 

In addition to the use of the change point analysis to delineate between 

high and low regret, the research team decided to add an additional metric for 

determining decision performance. Subjects that chose route 1 or 2 after trial 100 

would be automatically classified as having high regret. This metric took into 

account the time and duration of the experiment and at which point the optimal 

performers converged on the ideal decision. 
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III. RESULTS 

By conducting the change point analysis on all 34 subjects and comparing 

the resulting means with the median off all change point means, an effective 

threshold for delineating between high and low regret was established. Once the 

threshold for delineating between high and low regret was obtained, the data 

could then be compared with the cognitive state of the subject in order to 

categorize them in CAPTTIM. This section will detail how each subject’s regret 

was categorized and then compared with the cognitive state data. 

A. OVERVIEW OF COGNITIVE STATE DATA DEVELOPED FROM PRIOR 
RESEARCH 

A subject’s cognitive state was previously categorized by Maj Pete 

Nesbitt, who utilized an EWMA of the latency in decision-making times. A 

threshold was then applied to the EWMA in order to delineate between the 

cognitive states of exploration and exploitation. The threshold that was utilized 

was two times the standard deviation of latency in decision-making times 

immediately following trials that resulted in low damage. It was assumed that 

decision times after receiving low damage would be relatively fast, and therefore, 

could be used to determine an individual subject’s baseline latency time. In 

contrast, it was assumed that decision times following trials that resulted in high 

or medium damage would be longer, because subjects typically reflected on the 

negative feedback. The threshold was specific to each subject since it was 

calculated using their baseline. This threshold accurately delineated between 

exploration and exploitation for all 34 subjects. This prior work allowed the 

research team to know on a trial-by-trial basis whether the subject was exploring 

or exploiting (see Figure 11). This knowledge was crucial in the development of 

the CAPTTIM categorization algorithm. 
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Most subjects illustrated a pattern of taking longer to make decisions in 

the beginning of the convoy task when they were exploring and gathering 

information on the environment (higher latency times between decisions). Most 

subjects then transitioned to making decisions more rapidly (lower latency times 

between decisions) once they believed that they had converged on the correct 

choice and were exploiting that path. This pattern can easily be seen in Figure 

11, where Subject 4 spent approximately 45 trials exploring (shaded orange 

region) and then transitioned to exploitation (shaded blue region) from trial 45 to 

200. As can be seen from Figure 11, even though Subject 4 began exploiting the 

decision that he/she thought was the correct decision, heavy friendly damages 

(large red dots) were incurred throughout the remainder of the trials. Because 

Subject 4 incurred heavy and medium friendly damages throughout the 200 

trials, his/her final damage score was much lower than those of subjects who 

converged on the optimal choice. As a reminder, each subject began the 

experiment with a positive final damage score of 2000. When they received 

friendly damage this would deduct from their final damage score and when they 

inflicted damage on the enemy this would increase their score. The average final 

damage score across all 34 subjects was 2,402.94. Subject 4’s final damage 

score was 2050. 
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Figure 11.  EWMA of latency in decision-making times for Subject 4.  

The y-axis is latency in decision-making times and the x-axis is 
the number of trials. The colored dots represent damage incurred 

and are plotted at the actual latency in decision-making time 
versus the EWMA. The color and size of the dot is correlated 

with the level of damage incurred on the preceding trial. Red dots 
are high damage, blue dots are medium damage, and green dots 

are low damage. The orange shaded regions are where the 
EWMA is above the threshold (exploration) and the blue shaded 

regions are where the EWMA is below the threshold 
(exploitation). 

The following example is of a subject who illustrated optimal exploration of 

the environment followed by exploitation of the optimal choice. Figure 12 is the 

EWMA of latency in decision-making times for Subject 14. Subject 14 followed 

the typical pattern observed for most subjects, by exploring in the beginning 

(shaded orange region) and then transitioned to exploiting (shaded blue region). 

Subject 14 transitioned between exploration and exploitation by approximately 

trial 30. While Subject 14 took some medium damages (medium blue dots) and 

high damages (large red dots) in the beginning of his/her exploitation phase, 

he/she eventually converged on the optimal decision and incurred very little 
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damage throughout the remaining trials. As a result, Subject 14’s final damage 

score was 4700 compared to Subject 4’s score of 2050. 

 
Figure 12.  EWMA of latency in decision-making times for Subject 14. The 

y-axis is latency in decision-making times and the x-axis is the 
number of trials. The colored dots represent damage incurred 
and are plotted at the actual latency in decision-making time 
versus the EWMA. The color and size of the dot is correlated 

with the level of damage incurred on the previous trial. Red dots 
are high damage, blue dots are medium damage, and green dots 

are low damage. The orange shaded regions are where the 
EWMA is above the threshold (exploration) and the blue shaded 

regions are where the EWMA is below the threshold 
(exploitation). 

These examples demonstrate that knowing a subject’s cognitive state 

does not provide sufficient insight into their actual decision performance. 

Subjects 4 and 14 showed similar cognitive state patterns yet had very different 

decision performance. Thus, the next step was to combine the subject’s cognitive 

states with the categorization of their actual performance (high versus low 

regret), which was the focus of the research conducted in this thesis. 
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B. CHANGE POINT ANALYSIS COMBINED WITH COGNITIVE STATE 
DATA 

The cognitive state data from above was then taken and combined with 

the change point analysis data that delineated between high and low regret. This 

delineation provided a metric to gauge a subject’s actual performance. The 

combination of actual decision-making performance with cognitive state allowed 

for the categorization of subjects into CAPTTIM. 

1. Delineating High and Low Regret Using Change Point Analysis 

Using the change point analysis data, subjects were categorized as 

having high or low regret on a trial-by-trial basis. The change point analysis 

returned 15 change points for each of the 34 subjects. These change points 

represent instances where a subject’s process mean changed. The reason that 

15 change points were returned was as a result of the method used within R 

(SegNeigh) to conduct the change point analysis. The number of change points 

was limited to 15, due to the volatility of the regret data. Regret per trial values 

vary between 0 and 1250 with intermediate values of 100, 200 and 300. By 

limiting the number of change points the significant changes were readily 

identified, while the minor changes were allowed to occur without changing the 

process mean. If every change point were identified the number of change points 

would have been too numerous to provide any use for analysis. The change 

point and its associated process mean were then compared with the median of 

all 15 process means. This comparison looked at windows of trials on the basis 

of the process means returned from the change point analysis (see Figure 13). 

The process mean for that window of trials was then compared with the median 

of the process means to determine whether it fell above or below the median. If 

the process mean was above the median, the subject was categorized as having 

high regret; if the process mean was below the median, the subject was 

categorized as having low regret. Figure 13 clearly indicates that Subject 4 

experienced peaks of high regret throughout his/her 200 trials, which resulted in 

a much lower final damage score. 
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Figure 13.  Change point analysis for Subject 4. The y-axis is the regret 

per trial value, while the x-axis is the trial number. The red lines 
are the process means returned from the change point analysis. 

The spikes in the regret value are a result of the subject receiving 
heavy friendly damage and incurring high regret. These spikes 
result in a change point that exists over just one trial. The other, 
longer red lines are where the process mean did not change for 

that range of trials. 

The following information illustrates the change point analysis results for a 

subject who converged on the optimal choice. Figure 14 is the change point 

analysis chart for Subject 14. Subject 14 clearly illustrated the ideal exploration 

phase where heavy damage is expected and encouraged in order for the subject 

to fully explore the environment and identify the optimal choice. This exploration 

phase was followed by an ideal exploitation phase, where Subject 14 
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experienced minimal regret. Because Subject 14 experienced minor regret for 

the majority of trials, his/her final damage score was much higher than that of 

Subject 4 (4700 vs. 2050). Another interesting point illustrated by Subject 14, 

was that he/she experienced numerous change points in the beginning, but after 

trial 60 (approximately) the process mean remained constant. 

 
Figure 14.  Change point analysis for Subject 14. The y-axis is the regret 

per trial value, while the x-axis is the trial number. The red lines 
are the process means returned from the change point analysis. 

The spikes in the regret value are a result of the subject receiving 
heavy friendly damage and incurring high regret. These spikes 
result in a change point that exists over just one trial. The other, 
longer red lines are where the process mean did not change for 

that range of trials. 
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Once a threshold was established that effectively delineated between high 

and low regret and provided a method for gauging actual decision performance, 

the research team had all the requisite information required for categorizing 

subjects within CAPTTIM. This ability to categorize subjects within CAPTTIM 

fulfilled a primary goal of this thesis. 

2. Combining Cognitive State and Decision Performance to 
Categorize Subjects within CAPTTIM 

The combined cognitive state data and decision performance data allowed 

for the categorization of subjects within CAPTTIM to be accomplished. Figure 15 

shows the CAPTTIM categorization algorithm used to properly assign subjects 

within their appropriate category.  
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Figure 15.  CAPTTIM categorization algorithm. This figure illustrates  

how each subject is categorized in CAPTTIM based on decision-
making performance (measured by regret) and cognitive state 

(measured by latency in decision-making times). 

Because the change point analysis of regret and EWMA of latency in 

decision-making times delineate between decision performance and cognitive 

state for a range of trials, a graphical representation was developed that 

represents what category of CAPTTIM a subject is in on a trial by trial basis. This 

representation was overlaid on the regret per trial graph in order to illustrate how 

CAPTTIM could be used to provide instructors information on type and timing of 

intervention. 
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Figure 16 is the CAPTTIM categorization chart for Subject 4. Figure 16 

clearly shows that Subject 4 experienced high regret at times during his/her 

exploration phase (yellow block), but never fully explored the entire environment 

(orange blocks). After a brief exploration phase (approximately 45 trials), Subject 

4 transitioned to the exploitation phase. For windows of trials Subject 4 exploited 

decisions that resulted in low regret (green blocks). However, these windows 

were often interrupted by exploited decisions that resulted in high regret (red 

blocks). These repeated exploited decisions with high regret were a clear 

indicator that Subject 4 did not converge on the optimal choice. 

 
Figure 16.  CAPTTIM categorization chart for Subject 4. The color-coded 

bar at the bottom of the chart correlates to the category color 
found within the CAPTTIM model. Yellow is high regret and 

exploration. Orange is low regret and exploration. Red is high 
regret and exploitation. Green is low regret and exploitation. 
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Figure 17 is the CAPTTIM categorization chart for Subject 14. This figure 

accurately portrays that Subject 14 experienced high and low regret during 

his/her exploration phase (yellow and orange blocks), and even experienced a 

couple of poor choices during the initial exploitation phase (red blocks). For the 

vast majority of trials, however, Subject 14 made the ideal transition and 

converged on the optimal choice (green block) and did not deviate from the 

optimal choice for the remaining trials. 

 
Figure 17.  CAPTTIM categorization chart for Subject 14. The color-coded 

bar at the bottom of the chart correlates to the category color 
found within the CAPTTIM model. Yellow is high regret and 

exploration. Orange is low regret and exploration. Red is high 
regret and exploitation. Green is low regret and exploitation. 

The CAPTTIM categorization charts for Subjects 4 and 14 clearly 

illustrated typical patterns observed across the 34 subjects. Subject 4 illustrated 
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how the optimal path was never identified and exploited. This decision pattern 

would have resulted in an instructor intervention based on the CAPTTIM results. 

Subject 14, however, converged on the optimal choice and exploited. Thus, this 

decision pattern would have resulted in no instructor intervention being needed. 

The research team observed that the subjects fell into three typical groups 

consisting of (1) subjects who explored and eventually identified the optimal 

choice (n = 9), (2) those who explored and exploited non-optimal choices (n = 

21), and (3) subjects who never transitioned from the exploration cognitive state 

to the exploitation cognitive state (n = 4). This third group would have required 

instructor intervention, which was accurately identified using the CAPTTIM 

categorization charts. This third group is illustrated by subject 11 in Figures 18 

and 19. 

 
Figure 18.  EWMA of latency in decision-making times for Subject 11. The 

x- and y-axis are the same as the previously described graphs. 
Note that Subject 11’s EWMA of latency in decision-making 

times never falls below his/her threshold (shaded orange region). 
This subject spent the entire time exploring the environment and 

never exploited any decisions. 
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Figure 19.  CAPTTIM categorization chart for Subject 11. Note that the 

values are coded yellow, orange and red. The only reason that 
Subject 11 was ever categorized as red (high regret and 

exploitation) within CAPTTIM was due to the fact that subjects 
are penalized for choosing routes 1 and 2 after trial 100. Subject 

11’s final damage score was 2200. 

Based on the analysis conducted by the research team, the change point 

analysis of regret provided an accurate delineation between high and low regret. 

The combination of cognitive state data with the change point analysis in order to 

generate the CAPTTIM categorization chart is believed to be an effective 

instructor intervention tool. 
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C. VALIDATION OF CHANGE POINT ANALYSIS AND COGNITIVE DATA 
AS CAPTTIM CATEGORIZATION METRICS 

All that remained for the research team was to develop a means to 

validate the effectiveness of using the change point analysis, cognitive state 

data, and route choice after trial 100. The validation method chosen to validate 

how well these methods actually categorized subjects within CAPTTIM was a 

correlation test between number of trials a subject was in the red category and 

their advantageous selection bias and final damage score. Figures 20 and 21 

show the plots for these correlation tests. 

 
Figure 20.  Correlation between final damage score and number of trials 

spent in the red category of CAPTTIM. The red dots show a 
strong negative correlation between number of trials spent in the 

red category and final damage score. 
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Figure 21.  Correlation between advantageous selection bias and number 

of trials spent in the red category of CAPTTIM. The red dots 
show a strong negative correlation between number of trials 

spent in the red category of CAPTTIM and the subject’s 
advantageous selection bias. 

The Pearson correlation tests showed a strong negative correlation 

between the number of trials spent in the red category of CAPTTIM and a 

subject’s final damage score and advantageous selection bias. The correlation 

test between final damage score and number of trials spent in the red category of 

CAPTTIM returned a correlation value of – 0.92, p < .0001 (95% CI: -0.96 to -

0.85), which rejects the null hypothesis that true correlation is equal to 0. The 

correlation test between advantageous selection bias and number of trials spent 
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in the red category of CAPTTIM returned a correlation value of – 0.90, p < .0001 

(95% CI: -0.95 to -0.81), which rejects the null hypothesis that true correlation is 

equal to 0. 

An additional correlation test was suggested by Dr. Kennedy. Because the 

number of trials spent in the red and green category of CAPTTIM are not 

necessarily complementary, the same correlation tests described above were 

conducted looking at the number of trials spent in the green category of 

CAPTTIM. Figures 22 and 23 show the plots for these correlation tests. 

 
Figure 22.  Correlation between final damage score and number of trials 

spent in the green category of CAPTTIM. The green dots show a 
moderately strong positive correlation between number of trials 

spent in the green category and final damage score. 
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Figure 23.  Correlation between advantageous selection bias and number 

of trials spent in the green category of CAPTTIM. The green dots 
show a moderately strong positive correlation between number of 

trials spent in the green category and advantageous 
selection bias. 

Because the plots for these correlations were nonlinear, a Spearman’s 

correlation test was utilized. These tests showed a moderately strong positive 

correlation between the number of trials spent in the green category of CAPTTIM 

and a subject’s final damage score and advantageous selection bias. The 

correlation test between final damage score and number of trials spent in the 

green category of CAPTTIM returned a correlation value of 0.43, p = .01, which 

rejects the null hypothesis that true correlation is equal to 0. The correlation test 

between advantageous selection bias and number of trials spent in the green 



 46 

category of CAPTTIM returned a correlation value of 0.38, p = 0.01, which rejects 

the null hypothesis that true correlation is equal to 0. 

The weaker correlation between the number of trials spent in the green 

category of CAPTTIM and final damage score and advantageous selection bias 

was initially concerning to the research team. However, after further discussion 

and analysis the weaker correlation made sense. Because the population of high 

performers (high final damage scores and advantageous selection biases) was 

smaller within the subject population, the number of trials spent in the green 

category of CAPTTIM were not as abundant as the number of trials spent in the 

red category. Additionally, as discussed in the sections above, the third category 

of subjects were those who never transitioned between the cognitive state of 

exploration and exploitation. This category of subjects never had the opportunity 

to experience trials in the green category of CAPTTIM, based on the CAPTTIM 

categorization algorithm. These observations explained the weaker positive 

correlation between the numbers of trials spent in the green category compared 

to the strong negative correlation observed between the numbers of trials spent 

in the red category. 

These results confirmed the use of change point analysis and route choice 

after trial 100 as an effective method of delineating between high and low regret. 

When combined with a subject’s cognitive state data, these metrics provided an 

accurate means by which a subject’s decision-making pattern could be 

categorized within the CAPTTIM model. 
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IV. DISCUSSION 

The four primary goals of this thesis were to (1) find a threshold that 

delineated between high and low regret (decision performance), (2) combine the 

decision performance data with the cognitive state data, (3) validate these results 

and CAPTTIM, and (4) develop a visualization method for displaying a subject’s 

CAPTTIM category on a trial by trial basis. All of these primary goals were 

achieved. This final chapter will summarize the methods used to complete the 

four primary thesis goals, discuss the implications of the research conducted, 

discuss future work that could be done to better the CAPTTIM algorithm, and 

conclude this thesis. 

A. SUMMARY OF METHODS USED TO COMPLETE THESIS GOALS 

After exploring several analytical approaches, an appropriate method for 

determining the threshold for regret was found by conducting a change point 

analysis on the regret per trial that a subject received. The resulting 15 process 

means returned by the change point analysis were then compared with the 

median of the subject’s 15 process means. The median became the threshold 

that delineated between high and low regret and categorized the subject’s 

decision performance. An additional metric was introduced based on the number 

of trials that it took good performers to converge on the ideal decision. On 

average, the subjects who performed well during the experiment determined that 

Routes 3 and 4 were the optimal choices by trial 100. Therefore, the additional 

metric automatically categorized subjects as having high regret if they chose 

Routes 1 or 2 after trial 100. 

This decision performance data was then combined with the cognitive 

state data that categorized a subject’s cognitive state as either exploration or 

exploitation. The four resulting combinations were (1) high regret and exploration, 

(2) low regret and exploration, (3) high regret and exploitation, and (4) low regret 
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and exploitation. As a result of these combinations, a subject’s CAPTTIM 

category could be determined on a trial by trial basis. 

The validation of the effectiveness of this CAPTTIM categorization was 

conducted by performing a Pearson’s correlation between the number of trials 

spent in the red category of CAPTTIM, final damage score, and advantageous 

selection bias. The Pearson’s correlation test was chosen due to the linearity this 

data exhibited. These correlation results exhibited a very strong negative 

correlation between these factors. As a result, the number of trials spent in the 

red category of CAPTTIM proved to be a strong inverse predictor of a subject’s 

final damage score and advantageous selection bias. A Spearman’s correlation 

test was conducted between the number of trials spent in the green category of 

CAPTTIM, final damage score, and advantageous selection bias. The 

Spearman’s correlation test was chosen due to the nonlinearity this data 

exhibited. These correlation results showed a moderately strong positive 

correlation between these factors. As a result, the number of trials spent in the 

green category of CAPTTIM proved to be a moderate predictor of final damage 

score and advantageous selection bias. 

Finally the visualization of the CAPTTIM category data was designed by 

creating a bar that exhibited the CAPTTIM category color for each trial. The 

yellow region of trials is where the subject is experiencing high regret, while their 

cognitive state is exploration. During a subject’s exploration phase, high regret is 

acceptable and even encouraged. The subject needs to experience high regret in 

order to gain enough information about the environment to converge and exploit 

the optimal decision. The orange region of trials is where the subject is 

experiencing low regret, while their cognitive state is exploration. Long periods of 

low regret during exploration would require instructor intervention because the 

subject is ignorantly making the correct decision. Instructor intervention for the 

orange region could entail letting the subject know that they are making the 

correct decision or prompting them to sample more of the options to understand  
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why their decisions are better than the other options.  The red region of trials is 

where a subject is experiencing high regret, while his or her cognitive state is 

exploitation. Instructor intervention would be required because the subject is 

exploiting the non-optimal decision believing it to be the optimal decision. The 

green region of trials is the ideal state in which the subject is experiencing low 

regret while their cognitive state is exploitation. This yellow, orange, red, and 

green bar was then overlaid on the regret per trial graph for each subject. This 

visualization proved to be an effective means of communicating when and where 

a subject’s performance and cognitive state were aligned or misaligned. 

B. IMPLICATIONS 

The implications of this research are many. CAPTTIM provides feedback 

on a subject’s deviations from the ideal decision path/optimal decision pattern. 

Based on these deviations, CAPTTIM could provide meaningful feedback to an 

instructor on the timing and type of intervention that is needed by the trainee. 

While CAPTTIM is most suited for tasks in which the ideal decision path is 

known, it could be extrapolated to fit other types of tasks, like rapid response 

decisions or interactive tactical decision-making games, where understanding 

optimal decision-making would be beneficial. Another example that CAPTTIM 

could be extrapolated to fit is wargaming. In wargaming, a commander makes 

decisions based on the intelligence he/she has received and through trial and 

error determines the best course of action to execute. The optimal decision path 

is much more difficult to determine in these examples, but could be determined 

based on military tactics specific to the wargaming scenario. In these examples 

inexperienced commanders could conduct wargaming to gain experience that 

does not involve human lives and receive feedback via CAPTTIM on when and 

where their performance was aligned or misaligned with their cognitive state. 

Another implication of this research is that Army has begun a renewed 

focus on enhancing the leadership and knowledge of its personnel. The fact that 

technology has advanced to the degree that countries that used to be inferior in 
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their military capabilities can now develop quick and innovative solutions that 

have near peer capabilities, has led the Army to the conclusion that its human 

resources are its most valuable, adaptable, and flexible assets (Odierno & 

McHugh, 2015). Based on this conclusion the focus on leadership development 

tools that train military personnel to be agile, adaptive, and innovative problem 

solvers in an ambiguous and complex environment has been initiated at the 

highest level within the Army (Odierno & McHugh, 2015). These leadership 

development tools range from tasks that aim to improve working memory, 

comprehending languages, calculating, reasoning, problem solving, and 

decision-making (Odierno & McHugh, 2015). The ultimate goal of these 

leadership development tools is to provide technology developed instruction that 

employs adaptive learning strategies and intelligent tutoring to accelerate 

learning and education for Soldiers and Army Civilians (Odierno & McHugh, 

2015). 

The convoy task that was used to collect the data analyzed in this thesis 

elicits many of the Army’s desired leadership development qualities. It requires 

the user to be adaptive, agile, conduct reasoning, problem solve, and increases 

working memory and decision-making capabilities. Additionally, the work done in 

this thesis, specifically the advancement of the model CAPTTIM, has many 

implications across these leadership development tools. CAPTTIM could be 

utilized to provide the aspect of intelligent tutoring that could be applied to these 

technology developed instruction applications that are desired by the Army. 

Because of CAPTTIM’s ability to identify decision performance and cognitive 

misalignment, it could be used as an intelligent tutor to provide useful feedback 

to the trainee. Based on these implications the research team believes that 

CAPTTIM provides a valuable capability to the Army’s research on how to 

develop better leaders and decision makers. 
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C. FUTURE WORK 

As previously stated the delineation between high and low regret and the 

cognitive states of exploration and exploitation was calculated retrospectively. In 

order for CAPTTIM to be able to provide “real-time” feedback to an instructor or 

even a trainee, these delineations must be calculated dynamically. This is the 

most crucial advancement that must take place in this research in order for 

CAPTTIM to be a more effective tool for instructors. One way that this can be 

accomplished is to have a “burn in period” that is a set number of trials where no 

feedback is provided and a subject is not categorized into any CAPTTIM 

category. Once this period is complete, a change point analysis of regret per trial 

can be performed to determine the threshold that delineates between high and 

low regret. After this threshold is calculated for this period, all future decision 

performance can be compared to that threshold on a trial by trial basis. The 

same concept applies to the EWMA of latency in decision-making times in order 

to provide the delineation between the cognitive states of exploration and 

exploitation. Once this threshold is calculated for the “burn in period” a subject 

can be categorized into one of the two cognitive states on subsequent trials. 

These two delineations can then be combined, as they were in this thesis, to 

categorize subjects into a CAPTTIM category. An initial analysis of this “burn in 

period” concept with the research team, suggested that a period of 50–80 trials 

would be sufficient to calculate a threshold for decision performance and 

cognitive states. 

Other future work would be to (1) test CAPTTIM on a task that differs from 

the convoy task, and (2) develop the CAPTTIM oriented intervention feedback 

loop. Testing CAPTTIM on a task like wargaming, rapid response decisions, or 

tactical decision-making games will help validate CAPTTIM’s adaptability to 

different tasks. By validating the adaptability of CAPTTIM, the significance of this 

research to the Army’s leadership development focus will be further solidified. 

The development of the CAPTTIM oriented intervention feedback loop is 

necessary to enable the model to be used as an intelligent tutor in computer 
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based tasks. The ability for a script to be created that utilizes data categorized by 

CAPTTIM and provides task specific guidance/feedback to a trainee will, again, 

further illustrate CAPTTIM’s implication to the Army’s leadership development 

program. 

D. CONCLUSION 

Understanding optimal decision-making is a very difficult task, but one that 

is worth undertaking. The Army and the military as a whole have realized that, 

due to budget constraints, they are entering into one of the most fiscally austere 

environments that the military has experienced in decades (Odierno & McHugh, 

2015). As a result, they have grasped that the dominance of the United States 

military will not be accomplished by the unlimited acquisition of newer weapons, 

vehicles, and technology (Odierno & McHugh, 2015). Thus military dominance 

will be measured by the ability to develop military professionals that are capable 

of being effective, agile, adaptive, and innovative decision makers and problem 

solvers (Odierno & McHugh, 2015). The focus on force development versus the 

acquisition of material solutions lends gravity to the research conducted in this 

thesis. 

The research team believes that the work done in this thesis has furthered 

the understanding of decision-making and directly provides a useful tool that 

could be used to aid leadership development programs. While there is still much 

to discover when it comes to understanding how humans process information 

and make decisions, this research has made it more possible to understand and 

classify decision performance and cognitive state. With this understanding the 

human mind becomes less of a black box, in which an instructor or intelligent 

tutor has no insight, and allows a small peek at what is really going on in the 

subject’s decision-making process. This peek is made possible by the ability to 

understand and identify the alignment or misalignment of cognitive state with 

decision performance. By looking at a common reinforcement learning task, 

modified for the military domain, the research team was able to investigate and 
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better understand a subject’s decision-making pattern and how to intelligently 

influence this pattern if determined to be suboptimal. It will be exciting to see 

what follow on research discovers, and how CAPTTIM is modified to increase the 

understanding of optimal decision-making. 
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APPENDIX A. PAYOUT SCHEDULE FOR IGT AND CONVOY 
TASK 

IGT Payout Schedule 
 

Convoy Task Payout Schedule 
Deck A Deck B Deck C Deck D 

 
Rout 1 Route 2 Route 3 Route 4 

-150 100 50 50 
 

-150 100 50 50 
-250 100 0 50 

 
-250 100 0 50 

100 100 50 50 
 

100 100 50 50 
100 100 0 50 

 
100 100 0 50 

-50 100 50 50 
 

-50 100 50 50 
100 100 0 50 

 
100 100 0 50 

-200 100 50 50 
 

-200 100 50 50 
100 100 0 50 

 
100 100 0 50 

-100 -1150 0 50 
 

-100 -1150 0 50 
100 100 0 -200 

 
100 100 0 -200 

-150 100 50 50 
 

-150 100 50 50 
-250 100 50 50 

 
-250 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 
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100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 
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100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 
-150 100 0 -200 

 
-150 100 0 -200 

-250 100 50 50 
 

-250 100 50 50 
100 100 50 50 

 
100 100 50 50 

100 100 0 50 
 

100 100 0 50 
-50 100 50 50 

 
-50 100 50 50 

100 100 0 50 
 

100 100 0 50 
-200 100 50 50 

 
-200 100 50 50 

100 100 0 50 
 

100 100 0 50 
-100 100 50 50 

 
-100 100 50 50 

100 -1150 0 50 
 

100 -1150 0 50 

     
-150 100 0 -200 

     
-250 100 50 50 

     
100 100 50 50 

     
100 100 0 50 

     
-50 100 50 50 

     
100 100 0 50 

     
-200 100 50 50 

     
100 100 0 50 

     
-100 100 50 50 

     
100 -1150 0 50 

     
-150 100 0 -200 

     
-250 100 50 50 

     
100 100 50 50 

     
100 100 0 50 

     
-50 100 50 50 
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100 100 0 50 

     
-200 100 50 50 

     
100 100 0 50 

     
-100 100 50 50 

     
100 -1150 0 50 

     
-150 100 0 -200 

     
-250 100 50 50 

     
100 100 50 50 

     
100 100 0 50 

     
-50 100 50 50 

     
100 100 0 50 

     
-200 100 50 50 

     
100 100 0 50 

     
-100 100 50 50 

     
100 -1150 0 50 

     
-150 100 0 -200 

     
-250 100 50 50 

     
100 100 50 50 

     
100 100 0 50 

     
-50 100 50 50 

     
100 100 0 50 

     
-200 100 50 50 

     
100 100 0 50 

     
-100 100 50 50 

     
100 -1150 0 50 

     
-150 100 0 -200 

     
-250 100 50 50 

     
100 100 50 50 

     
100 100 0 50 

     
-50 100 50 50 

     
100 100 0 50 

     
-200 100 50 50 

     
100 100 0 50 

     
-100 100 50 50 

     
100 -1150 0 50 

     
-150 100 0 -200 

     
-250 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 
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-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 
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-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 
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-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

     
100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 
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100 100 50 50 
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100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 
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-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 
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100 100 50 50 

     
100 100 50 50 

     
-50 100 0 50 

     
100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 
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100 100 50 50 

     
100 100 50 50 
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100 100 50 50 

     
-200 100 0 50 

     
100 100 50 50 

     
-100 100 0 50 

     
100 100 50 50 

     
-150 -1150 0 50 

     
-250 100 0 -200 

 



 63 

APPENDIX B. R SCRIPTS 

A. EWMA OF DECISION LATENCY TIMES R SCRIPT 

print("begin script: ODM multi-arm bandit analysis") 
setwd("~/NPS/Thesis/Thesis Data/Data Critz") 
require(zoo) 
require(ggplot2) 
require(fTrading) 
require(qcc) 
require(RColorBrewer) 
require(StatMatch) 
IGT <- T # Are we using the published IGT payout schedule? 
PlayerInput <- T # Are we analysing a human player? 
doRegretA.mb <- T # regret by absolute  
 
Basics <- F # plot basic histograms 
BasicsT <- F # plot basic histograms 
 
# Create, test through MC, plot new distributions... 
 
numTrials <-200 #  ignore any more than 200 trials 
cog.state <- vector() #Capture cognitive state data 
route.select <- vector() #Capture route choice 
 
# Read in payout schedule 
  IGTresponse <- read.csv("IGTimproved.csv") 
  numBandits = length(IGTresponse) 
  numTrials <-200 
 
# Read in player input 
if (PlayerInput){ 
  files <- list.files(pattern = '*MultiArmBandit*')  
  numPlayers <- length(files) 
  numBandits <- 4 
  subject <- 1 
  # Create dataframe for subject specific response 
  MA.decision <- data.frame(matrix(0,nrow=200,ncol=numPlayers)) 
  # Create dataframe for descriptive statistics 
  MA.summary <- data.frame(matrix(0,nrow=numPlayers,ncol=35)) 
  header <-c('Subject','mb.FD.100','mb.numFD.100','mb.numHFD.100', 
             'mb.R1.100','mb.R2.100','mb.R3.100','mb.R4.100','mb.adv.sb.100', 
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'mb.mean.l.100','mb.med.l.100','mb.sd.100','mb.numFD.SecHalf','mb.numHFD.S
ecHalf', 
             
'mb.R1.SecHalf','mb.R2.SecHalf','mb.R3.SecHalf','mb.R4.SecHalf','mb.adv.sb.Se
cHalf', 
             
'mb.mean.l.SecHalf','mb.med.l.SecHalf','mb.sd.SecHalf','mb.FD.200','mb.numFD.
200','mb.numHFD.200', 
             'mb.R1.200','mb.R2.200','mb.R3.200','mb.R4.200','mb.adv.sb.200', 
             'mb.mean.l.200','mb.med.l.200','mb.sd.200','SigLat','perc.regret') 
  names(MA.summary) <- header 
   
  # df used for calculating regret 
  Regret.mb.df <- data.frame(matrix(0,nrow=0,ncol=5)) 
 
   
  #Import Player choices and resulting response by trial 
  #file <- files[1] 
  element<-1 
  for(file in files){ 
     
    PlayerID <- file#paste('Subject ',subject,sep="") 
    print(PlayerID) 
    player <- read.csv(file) 
    #print(summary(player)) 
    LL <- list() 
    player<- subset(player, trial<201) 
    numTrials <- length(player[,1]) 
     
    # add players decision to MA.decision 
    colnames(MA.decision)[element]<-as.numeric(noquote(strsplit(PlayerID," 
")[[1]])[1]) 
    MA.decision[element] <- player$routeSel 
    decide <- as.numeric(player$routeSel)      # get decision data) 
    decide[decide== "1"] <- -1 # recode selections to adv sel scores 
    decide[decide== "2"] <- -1 
    decide[decide== "3"] <-  1 
    decide[decide== "4"] <-  1 
    element<-element+1 
     
    # Latency by trial number plot 
    numShift      <-numTrials-1 
    shift         <-append(0,head(player$trialLoss,numShift),after=1) 
    Damage.before <-factor(player$trialLoss) 
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    Damage.after  <-factor(shift) 
    size.before   <-factor(player$trialLoss) 
    size.after    <-factor(shift)               
    Damage.color  <-factor(player$trialLoss) 
    damage.cat    <-list('none to low (0,50)'=0,'none to low (0,50)'=50,'med 
(150,200,250,300,350)'=150,'med (150,200,250,300,350)'=200, 
                       'med (150,200,250,300,350)'=250,'med 
(150,200,250,300,350)'=300,'med (150,200,250,300,350)'=350,'high 
(1250)'=1250) 
    damage.size<-
list('10'=0,'10'=50,'20'=150,'20'=200,'20'=250,'20'=300,'20'=350,'100'=1250) 
    damage.color<-
list('3'=0,'3'=50,'2'=150,'2'=200,'2'=250,'2'=300,'2'=350,'5'=1250) 
    levels(Damage.before) <- damage.cat 
    levels(Damage.after)  <- damage.cat 
    levels(size.before)   <- damage.size 
    levels(size.after)    <- damage.size 
    levels(Damage.color)  <- damage.color 
    myColors              <- brewer.pal(5,"Set1") 
    names(myColors)       <- c(100,20,10) 
    colScale <- scale_colour_manual(name = "damage",values = myColors) 
     
     
    player<- 
cbind(player,Damage.before,Damage.after,size.before,size.after)#,ewmaS) 
 
###Fill in summary stats for 100 trials 
    #'Subject' 
    subject <- as.numeric(noquote(strsplit(PlayerID, " ")[[1]])[1]) 
    MA.summary[subject,1]<- subject 
    #'Final Damage' 
    MA.summary[subject,2]<- player$Damage[100] 
    #'# trials friendly damage' 
    MA.summary[subject,3]<- sum(player$trialLoss[1:100]>0) 
    #'# trials heavy friendly damage' 
    MA.summary[subject,4]<- sum(player$trialLoss[1:100]>1000) 
    #'Route 1' 
    MA.summary[subject,5]<- sum(player$routeSel[1:100]=='1')/100 
    #'Route 2' 
    MA.summary[subject,6]<- sum(player$routeSel[1:100]=='2')/100 
    #'Route 3' 
    MA.summary[subject,7]<- sum(player$routeSel[1:100]=='3')/100 
    #'Route 4' 
    MA.summary[subject,8]<- sum(player$routeSel[1:100]=='4')/100 
    #'advantageuos selection bias' 
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    MA.summary[subject,9]<- 
sum(player$routeSel[1:100]=='3')+sum(player$routeSel[1:100]=='4')-
sum(player$routeSel[1:100]=='1')-sum(player$routeSel[1:100]=='2') 
    #'mean latency time' 
    MA.summary[subject,10]<- mean(player$latent[2:100]) 
    #'median latency' 
    MA.summary[subject,11]<- median(player$latent[2:100]) 
    #'standard deviation latency' 
    MA.summary[subject,12]<- sd(player$latent[2:100]) 
     
    #Fill in summary stats for second half, 101-200 trials 
    #'# trials friendly damage' 
    MA.summary[subject,13]<- sum(player$trialLoss[101:200]>0) 
    #'# trials heavy friendly damage' 
    MA.summary[subject,14]<- sum(player$trialLoss[101:200]>1000) 
    #'Route 1' 
    MA.summary[subject,15]<- sum(player$routeSel[101:200]=='1')/100 
    #'Route 2' 
    MA.summary[subject,16]<- sum(player$routeSel[101:200]=='2')/100 
    #'Route 3' 
    MA.summary[subject,17]<- sum(player$routeSel[101:200]=='3')/100 
    #'Route 4' 
    MA.summary[subject,18]<- sum(player$routeSel[101:200]=='4')/100 
    #'advantageuos selection bias' 
    MA.summary[subject,19]<- 
sum(player$routeSel[101:200]=='3')+sum(player$routeSel[101:200]=='4')-
sum(player$routeSel[101:200]=='1')-sum(player$routeSel[101:200]=='2') 
    #'mean latency time' 
    MA.summary[subject,20]<- mean(player$latent[101:200]) 
    #'median latency' 
    MA.summary[subject,21]<- median(player$latent[101:200]) 
    #'standard deviation latency' 
    MA.summary[subject,22]<- sd(player$latent[101:200]) 
     
    #Fill in summary stats for 200 trials 
    #'Final Damage' 
    MA.summary[subject,23]<- player$Damage[numTrials] 
    #'# trials friendly damage' 
    MA.summary[subject,24]<- sum(player$trialLoss>0) 
    #'# trials heavy friendly damage' 
    MA.summary[subject,25]<- sum(player$trialLoss>1000) 
    #'Route 1' 
    MA.summary[subject,26]<- sum(player$routeSel=='1')/numTrials 
    #'Route 2' 
    MA.summary[subject,27]<- sum(player$routeSel=='2')/numTrials 
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    #'Route 3' 
    MA.summary[subject,28]<- sum(player$routeSel=='3')/numTrials 
    #'Route 4' 
    MA.summary[subject,29]<- sum(player$routeSel=='4')/numTrials 
    #'advantageuos selection bias' 
    MA.summary[subject,30]<- 
sum(player$routeSel=='3')+sum(player$routeSel=='4')-
sum(player$routeSel=='1')-sum(player$routeSel=='2') 
    #'mean latency time' 
    MA.summary[subject,31]<- mean(player$latent[2:200]) 
    #'median latency' 
    MA.summary[subject,32]<- median(player$latent[2:200]) 
    #'standard deviation latency' 
    MA.summary[subject,33]<- sd(player$latent[2:200]) 
    #'Significant latency' 
    MA.summary[subject,34]<- mean(player$latent[player$size.before==100]) 
     
    if(doRegretA.mb){ 
      num.a <- 1 # set the next trial to one for each option 
      num.b <- 1 
      num.c <- 1 
      num.d <- 1 
      regret.total <- 0 # initialize total regret 
      regret.c <- 0 # initialize regret count 
      regret.r <- 0 # initialize regret rate 
      for(trial in 1:numTrials){ # for every trial (withing every player loop) 
        # The best option value (gain+loss already computed) in the schedule for 
each option  
        opt.choice.v<- 
max(IGTresponse[num.a,1],IGTresponse[num.b,2],IGTresponse[num.c,3],IGTres
ponse[num.d,4]) 
        # From the records, what they gained and lost 
        player.choice.v <- player$trialGain[trial]-player$trialLoss[trial] # positive is 
good 
        # find the difference 
        regret.v <- opt.choice.v - player.choice.v  
        if(regret.v>0){regret.c <- regret.c +1} 
        regret.r <- regret.c/trial 
        # accumulate regret 
        regret.total <- regret.total + regret.v 
        # normalize by trials 
        regret.mean <- regret.total / trial 
        # error check 
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        # 
if(regret.v<0){print(paste(num.a,num.b,num.c,num.d,'opt',opt.choice.v,'player',pla
yer.choice.v,'regret =',regret.v,' sub ',subject,' trial ',trial))} 
        # update next available options 
        if(player$routeSel[trial]==1){num.a<-num.a+1} 
        if(player$routeSel[trial]==2){num.b<-num.b+1} 
        if(player$routeSel[trial]==3){num.c<-num.c+1} 
        if(player$routeSel[trial]==4){num.d<-num.d+1} 
        # combine into row 
        trial.regret<- 
c(trial,decide[trial],regret.v,regret.total,regret.mean,subject,regret.r) 
        # add to Regret.df data.frame of all trial/regret measure/player combinations 
        Regret.mb.df <- rbind(Regret.mb.df,trial.regret) 
      } 
    } 
#'Significant latency' 
MA.summary[subject,35]<- regret.r 
  
player <- player[-1,] # Remove first lantency observation 
 
### Sequential Detection Methods for Detecting Exploration-Exploitation Mode 
Changes 
 
  ### Method 1: The Exponentially Weighted Moving Average 
 
# develop single number of standard deviation of all latencies after low damage  
threshold <- 2 # threshold multiplier 
mb.sd.threshold <- sd(player$latent[player$size.before==10])*threshold 
 
# develop estimate of moving latency from exponential moving z_t = ?? y_t + (1-
??) z_{t-1} 
EWMAlambda <- .1 # lambda 
ewma.latent.lst<- 
ewmaSmooth(player$trial[player$size.before==10],player$latent[player$size.befo
re==10],lambda=EWMAlambda) # list of estimate data 
 
# build a dataframe with this data in it 
EWMA <- data.frame(matrix('NA',nrow=length(ewma.latent.lst$x),ncol=3)) 
header <-c('trial','ewma','threshold') 
names(EWMA) <- header 
EWMA['trial'] <- ewma.latent.lst$x 
EWMA['ewma'] <- ewma.latent.lst$y 
EWMA['threshold'] <- mb.sd.threshold 
 
# merge it with the other player data  
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player <- merge(player,EWMA,by="trial",all.x=T,fill=NA) 
 
# Inpute data from missing high damage +1 trials 
# input by 'hot deck', simply continue last value until next observation (estimate in 
this case) 
ewma.shift<-append(0,head(player$ewma,length(player$ewma)-1),after=1) 
#vector from shifting ewma down 1 
num.mistakes <-5 
for(mistake in 1:num.mistakes){ 
ewma.shift<-append(0,head(ewma.shift,length(ewma.shift)-1),after=1)#shift 
again... 
player$ewma[is.na(player$ewma)]<-ewma.shift[is.na(player$ewma)] 
} 
 
# build upper and lower bounds for colored ribbons on graph 
player['upper.line'] <- apply(cbind(player$threshold,player$ewma),1,max) 
player['lower.line'] <- apply(cbind(player$threshold,player$ewma),1,min) 
cog.stateTmp <- numeric(200) 
cog.stateTmp[1] <- "explore" 
cog.stateTmp[2:200] <- ifelse(player$ewma>player$threshold,"explore","exploit") 
cog.state <- c(cog.state,cog.stateTmp) 
#Due to long latency, we do not count the first route selection. 
route.selectTmp <- numeric(200) 
route.selectTmp[1] <- 0 #Can be any value for this analysis 
route.selectTmp[2:200] <- player$routeSel 
route.select <- c(route.select,route.selectTmp) 
 
### Method 2: Monitoring Sequential Sample Variances 
 
###Create / Save graphs for each subject  
#     maxLatent <- 8  
#     gtitle <- paste('Latency and EWMA by trial number for',PlayerID) 
#     ftitle <- paste0(subject,'TxL.png') 
#     LatByTrial<-ggplot(data=player,aes(x=trial,y=latent))+ 
#     
geom_ribbon(aes(ymin=threshold,ymax=upper.line,linetype="NA"),fill="orange",al
pha=.5,show_guide=F)+ 
#     
geom_ribbon(aes(ymin=lower.line,ymax=threshold,linetype="NA"),fill="skyblue",a
lpha=.5,show_guide=F)+ 
#     
labs(title=gtitle)+coord_cartesian(ylim=c(0,maxLatent))+colScale+theme_bw()+xl
ab("Trials")+ylab("Latency") 
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#     LatByTrial<-
LatByTrial+geom_line(data=player,aes(x=trial,y=ewma),linetype=1,colour="grey8
8") 
#     LatByTrial<-
LatByTrial+geom_point(data=player,aes(x=trial,y=latent,color=size.after,size=siz
e.after),show_guide=T) 
#     #png(file=ftitle,width = 1000, height = 700) 
#     print(LatByTrial) 
#     maxLatent <- 8 
#     gtitle <- paste('Latency and EWMA by trial number for',PlayerID) 
#     ftitle <- paste0(subject,'TxL.png') 
#     LatByTrial<-ggplot(data=player,aes(x=trial,y=latent))+ 
#     
geom_ribbon(aes(ymin=threshold,ymax=upper.line,linetype=NA,fill="Explore"),al
pha=.5,show_guide=T)+ 
#     
geom_ribbon(aes(ymin=lower.line,ymax=threshold,linetype=NA,fill="Exploit"),alp
ha=.5,show_guide=F)+ 
#     scale_fill_manual(values=c("Explore"='orange',"Exploit"="skyblue"))+ 
#     
#labs(title=gtitle)+coord_cartesian(ylim=c(0,maxLatent))+theme_bw()+xlab("Trial
s")+ylab("Latency") 
#     
labs(title=gtitle)+coord_cartesian(ylim=c(0,maxLatent))+colScale+theme_bw()+xl
ab("Trials")+ylab("Latency") 
#LatByTrial<-
LatByTrial+geom_line(data=player,aes(x=trial,y=ewma),linetype=1,colour="grey8
8") 
#LatByTrial<-
LatByTrial+geom_point(data=player,aes(x=trial,y=latent,color=size.after,size=siz
e.after),show_guide=T) 
#     #png(file=ftitle,width = 1000, height = 700) 
#  
#     print(LatByTrial) 
#     dev.off() 
#  
#     gtitle <- paste('Route by trial number for',PlayerID) 
#     plotBT<- ggplot(player,aes( trial,colour = size.before,factor(routeSel))) + 
labs(title = gtitle)+colScale 
#     plotBT<-plotBT+geom_point(aes(size = size.before),show_guide = F) + 
theme_bw()+  xlab("Trials") +ylab("Routes") 
#     #plotBT<-plotBT+geom_point(aes(colour = Damage.color))#+ 
scale_fill_continuous(name = "Friendly damage on previous 
trial")#+coord_cartesian(ylim=c(0,8))  
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#     plotBT<-plotBT + theme(legend.direction = "horizontal", legend.position = 
"bottom")#+annotate("text", x = 0, y = 10, label = "Relationship between x and y")  
#     #LatByTrial+ guides(fill = guide_legend(title.theme = element_text(size=15, 
face="italic", colour = "red", angle = 45))) 
#     ftitle <- paste0(subject,'TxR.png') 
#     png(file=ftitle,width = 1000, height = 700) 
#     suppressWarnings(print(plotBT)) 
#     dev.off() 
 
    subject <- subject+1 
     
  } 
 
header<-
c('trial','adv.sel.bias','regret.trial','regret.total','regret.mean','subject','regret.rate') 
names(Regret.mb.df) <- header 
  } # end of read in player input (PlayerInput) 
 
survey_data<- 
merge(read.csv("survey_data.csv"),read.csv("groups.csv"),by="Subject") 
total<-merge(survey_data,MA.summary,by="Subject") 
Regret.mb.df$Cog.State <- cog.state 
Regret.mb.df$RouteSel <- route.select 
 
save.image("C:/Users/John/Documents/NPS/Thesis/ThesisData/Data 
Critz/RegretData.RData") 

B. CHANGEPOINT ANALYSIS R SCRIPT 

setwd("~/NPS/Thesis/Thesis Data/Data Critz") 
load("C:/Users/John/Documents/NPS/Thesis/ThesisData/Data 
Critz/RegretData.RData") 
 
library("changepoint") 
subject.vec <- unique(Regret.mb.df$subject) #For all subjects 
#subject.vec <- subject.vec[9] 
#subject.vec <- c(1,4,8,11,14,15,17,26,28) 
regret.vec <- numeric(200) 
median.vec <- numeric (200) 
med.dev <- numeric(200) 
#upperCTLLimit <- numeric(200) 
bin <- list() 
chngepoint.bin <- list() 
bin.vec <- numeric(200) 
subject.index <- 1 
subject.start <- 1 
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subject.difference <- 200 
 
for(index in 1:length(subject.vec)){ 
  subject.tmp <- which(Regret.mb.df$subject==subject.vec[index]) 
  test.subj <- Regret.mb.df[subject.tmp[1]:subject.tmp[200],] 
#   a <- 1 
#   b <- 5 
  bin.index <- 1 
  tmp.chng <- cpt.mean(test.subj[,3], method="SegNeigh",Q=15) 
  chngepoint.bin[[index]] <- tmp.chng 
  #Corrected histogram label 
  png(paste("RegretHistogramSubject",subject.vec[index],".png",sep="")) 
  hist(test.subj[,3],col="blue",xlab="Regret Value",main=paste("Regret Histogram 
for Subject ",subject.vec[index],sep="")) 
  dev.off() 
} 
 
save.image("C:/Users/John/Documents/NPS/Thesis/ThesisData/Data 
Critz/RegretData.RData") 

C. CAPTTIM VISUALIZATION R SCRIPT 

#Had to create the vector for subject 9 manually 
#Source Revised MultiArm 
#Source Regret.Mean file 
require(data.table) #Required to find unique column elements 
#Find the sujects we want 
#subject.vec <- unique(Regret.mb.df$subject) #For all subjects 
#subject.vec <- c(1,4) 
#subject.vec <- c(11) 
#index <- 1 
#subject.vec <- subject.vec[-c(1:8)] 
#subject.vec1 <- subject.vec[-9] 
 
subject.control.vec1 <- vector() 
subject.category1 <- vector() 
index <- 1 
for(index in 1:length(subject.vec)){ 
  print(paste("Processing Subject ",subject.vec[index])) 
  subject.tmp <- which(Regret.mb.df$subject==subject.vec[index]) 
  test <- Regret.mb.df[subject.tmp[1]:subject.tmp[200],] 
  test2 <- chngepoint.bin[[index]] 
  chgptmean.vec <- numeric(200) #Creat a vector to collect the changepoints 
  i <- 1 
  while(i < length(test2@cpts)+1){ 
    #   browser() 
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    #    print(paste("I is ",i)) 
    #    print(chgptmean.vec) 
    if(i==1){ 
      chgptmean.vec[i] <- test2@param.est$mean[i] 
      i <- i + 1 
      next 
    } 
    if(test2@cpts[i]!=200){ 
      if(test2@cpts[i]-test2@cpts[i-1]==1){ 
        chgptmean.vec[test2@cpts[i]] <- test2@param.est$mean[i] 
        i <- i + 1 
        next 
      } 
      if(test2@cpts[i+1]-test2@cpts[i]==1){ 
        chgptmean.vec[(test2@cpts[i-1]+1):(test2@cpts[i])]<- 
test2@param.est$mean[i] 
        i <- i + 1 
        next 
      } 
       
      if(test2@cpts[i+1]-test2@cpts[i]>1){ 
        chgptmean.vec[(test2@cpts[i-1]+1):(test2@cpts[i])]<- 
test2@param.est$mean[i] 
        i <- i + 1 
        next 
      } 
    } 
     
    if(test2@cpts[i]==200){ 
      chgptmean.vec[(test2@cpts[i-1]+1):(test2@cpts[i])]<- 
test2@param.est$mean[i] 
      i <- i+1 
    } 
     
  } 
 
  test$Mean.Regret <- chgptmean.vec #Add this to whatever dataframe you 
would like of the same length 
  #Now let's add color 
  #First let’s find out which trials were in or out of control 
  control.vec <- numeric(200) 
  for(i in 1:200){ 
    if(test$Mean.Regret[i]>median(test2@param.est$mean)){ 
      control.vec[i] <- "high" 
    } 
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    if(test$Mean.Regret[i]<=median(test2@param.est$mean)) { 
      control.vec[i] <- "low" 
    } 
  } 
   
  test$Control <- control.vec 
  subject.control.vec1 <- c(subject.control.vec1,control.vec) 
 
  #Next, make up a color for each value 
  color.vec <- numeric(200) 
  for(i in 1:200){ 
    if(i <= 100){ 
      if(test$Cog.State[i]=='explore' & test$Control[i]=="low"){ 
        color.vec[i] <- "orange" 
      } 
      if(test$Cog.State[i]=='explore' & test$Control[i]=="high") { 
        color.vec[i] <- "yellow" 
      } 
      if(test$Cog.State[i]=='exploit' & test$Control[i]=="low") { 
        color.vec[i] <- "green" 
      } 
      if(test$Cog.State[i]=='exploit' & test$Control[i]=="high") { 
        color.vec[i] <- "red" 
      } 
    } 
    if(i > 100){ 
      if(test$RouteSel[i]==2) { 
        color.vec[i] <- "red" 
        next 
      } 
      if(test$RouteSel[i]==1) { 
        color.vec[i] <- "red" 
        next 
      } 
      if(test$Cog.State[i]=='explore' & test$Control[i]=="low"){ 
        color.vec[i] <- "orange" 
      } 
      if(test$Cog.State[i]=='explore' & test$Control[i]=="high") { 
        color.vec[i] <- "yellow" 
      } 
      if(test$Cog.State[i]=='exploit' & test$Control[i]=="low") { 
        color.vec[i] <- "green" 
      } 
      if(test$Cog.State[i]=='exploit' & test$Control[i]=="high") { 
        color.vec[i] <- "red" 
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      } 
    } 
 
 
  } 
  #test$Color <- color.vec 
  subject.category1 <- c(subject.category1,color.vec) 
  test$Color <- color.vec 
  png(paste("Subject",subject.vec[index],"CAPTTIMPlot.png",sep="")) 
  plot(c(1, 200), c(1, 1250), type = "n", main= paste("Subject ",subject.vec[index]," 
CAPTTIM",sep=""), 
       xlab="Trial",ylab="Regret Per Trial") #Creat a blank plot 
  color.index <- data.table:::uniqlist(list(test$Color)) 
  i <- 1 
  while(i < max(color.index)){ 
    #browser() 
    #cat("i is now",i) 
    tmp <- which(color.index==i) 
    if(length(tmp)==0){ 
      i <- i+1 
      tmp <- which(color.index==i) 
    } 
    if(length(tmp)==1){ 
      if(i < max(color.index)){ 
        if(color.index[tmp+1]-color.index[tmp]==1){ #check for single change points 
at a trial 
          #cat("i is",i,"\n") 
          rect(color.index[tmp],0,color.index[tmp+1],100,col=test$Color[i]) 
          i <- i+1 
          tmp <- which(color.index==i) 
        } 
      } 
      if(length(tmp)!=0 && tmp !=length(color.index)){ 
        if(color.index[tmp+1]-color.index[tmp]==1){ #check for single change points 
at a trial 
          #cat("i is",i,"\n") 
          rect(color.index[tmp],0,color.index[tmp+1],100,col=test$Color[i]) 
          i <- i+1 
          next 
        } 
        if(color.index[tmp+1]-color.index[tmp]>1){  
          #cat("i is",i,"\n") 
          rect(color.index[tmp],0,color.index[tmp+1],100,col=test$Color[i]) 
          i <- i+1 
          tmp <- which(color.index==i) 
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        } 
      } 
      if(length(tmp)!=0 && tmp == length(color.index)){ 
        rect(color.index[tmp],0,200,100,col=test$Color[i]) 
        break 
      } 
      else{ 
        #cat("i is",i,"\n") 
        i <- i+1 
      } 
    } 
     
  } 
   
  lines(test$regret.trial,lty=2,col="blue") 
  dev.off() 
   
 
} 
 
Regret.mb.df$Regret.Level <- subject.control.vec1 
Regret.mb.df$Capttim.Category <- subject.category1 
save.image("C:/Users/John/Documents/NPS/Thesis/ThesisData/Data 
Critz/RegretData.RData") 
write.csv(Regret.mb.df,file="SubjectData.csv") 

D. CORRELATION TEST R SCRIPT 

#Loop through each subject 
#Take out row 16 of MA summary 
MA.summaryTest <- MA.summary[-16,] 
red.count.vec <- vector() 
green.count.vec <- vector() 
for(i in MA.summaryTest$Subject){ 
  tmp.df <- Regret.mb.df[Regret.mb.df$subject==i,] 
  red.count <- sum(tmp.df$Capttim.Category=='red') 
  red.count.vec <- c(red.count.vec,red.count) 
  green.count <- sum(tmp.df$Capttim.Category=='green') 
  green.count.vec <- c(green.count.vec, green.count) 
} 
 
pearsonTest(red.count.vec,MA.summaryTest$mb.FD.200) 
 
pearsonTest(red.count.vec,MA.summaryTest$mb.adv.sb.200) 
 
spearmanTest(green.count.vec,MA.summaryTest$mb.FD.200) 
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spearmanTest(green.count.vec,MA.summaryTest$mb.adv.sb.200) 
 
png(paste("CorrelationTestRedFD.png")) 
plot(xlab = "Number of Trials in Red CAPTTIM Category", 
     ylab = "Final Damage Score", 
     red.count.vec,  
     MA.summaryTest$mb.FD.200, col = "red") 
dev.off() 
 
png(paste("CorrelationTestRedAdvSelectBias.png")) 
plot(xlab = "Number of Trials in Red CAPTTIM Category", 
     ylab = "Advantageous Selection Bias", 
     red.count.vec,  
     MA.summaryTest$mb.adv.sb.200, col = "red") 
dev.off() 
 
png(paste("CorrelationTestGreenFD.png")) 
plot(xlab = "Number of Trials in Green CAPTTIM Category", 
     ylab = "Final Damage Score", 
     green.count.vec,  
     MA.summaryTest$mb.FD.200, col = "green") 
dev.off() 
 
png(paste("CorrelationTestGreenAdvSelectBias.png")) 
plot(xlab = "Number of Trials in Green CAPTTIM Category", 
     ylab = "Advantageous Selection Bias", 
     green.count.vec,  
     MA.summaryTest$mb.adv.sb.200, col = "green") 
dev.off() 

E. EXECUTE R SCRIPT 

#Workflow 
rm(list=ls()) 
setwd("~/NPS/Thesis/Thesis Data/Data Critz") 
source('ReviesedMultiArm_Scrub.v13_Critz.R') 
source('RegretMeanPlots_Critz.R') 
source('RectangleFinalPlot_Critz.R') 
save.image('FinalDataScrub.RData') 
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